• 内容讲解

在任一条指令的执行过程中,各个功能部件都会随着指令执行的进程而呈现出时忙时闲的现象。要加快计算机的工作速度,就应使各个功能部件并行工作,即以各自可能的高速度同时、不停地工作,使得各部件的操作在时间上重叠进行,实现流水式作业。

从原理上说,计算机的流水线(Pipeline)工作方式就是将一个计算任务细分成若干个子任务,每个子任务都由专门的功能部件进行处理,一个计算任务的各个子任务由流水线上各个功能部件轮流进行处理(即各子任务在流水线的各个功能阶段并发执行),最终完成工作。这样,不必等到上一个计算任务完成,就可以开始下一个计算任务的执行。

流水线的硬件基本结构如图5-18所示。流水线由一系列串联的功能部件(Si)组成,各个功能部件之间设有高速缓冲寄存器(L),以暂时保存上一功能部件对子任务处理的结果,同时又能够接受新的处理任务。在一个统一的时钟(C)控制下,计算任务从功能部件的一个功能段流向下一个功能段。在流水线中,所有功能段同时对不同的数据进行不同的处理,各个处理步骤并行地操作。

514.gif

当任务连续不断地输入流水线时,在流水线的输出端便连续不断地输出执行结果,流水线达到不间断流水的稳定状态,从而实现了子任务级的并行。

当指令流不能顺序执行时,流水过程会中断(即断流)。为了保证流水过程的工作效率,流水过程不应经常断流。在一个流水过程中,实现各个子过程的各个功能段所需要的时间应该尽可能保持相等,以避免产生瓶颈,导致流水线断流。

流水线技术本质上是将一个重复的时序过程分解成若干个子过程,而每一个子过程都可有效地在其专用功能段上与其他子过程同时执行。采用流水线技术通过硬件实现并行操作后,就某一条指令而言,其执行速度并没有加快,但就程序执行过程的整体而言,程序执行速度大大加快。

流水线技术适合于大量的重复性的处理。